Part Number Hot Search : 
SG100 00030 CMBT200A PH406466 C5750X7 BD46422 01006 FDR3502P
Product Description
Full Text Search
 

To Download IRF3007S Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet ? power mosfet specifically designed for automotive applications, this design of hexfet ? power mosfets utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this hexfet power mosfet are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating. these combine to make this design an extremely efficient and reliable device for use in automotive applications and a wide variety of other applications. s d g v dss = 75v r ds(on) = 0.0126 ? i d = 62a description  www.irf.com 1 ultra low on-resistance 175c operating temperature fast switching repetitive avalanche allowed up to tjmax features typical applications 42 volts automotive electrical systems automotive mosfet IRF3007S irf3007l to-262 irf3007l d 2 pak IRF3007S ** this is applied to d 2 pak, when mounted on 1" square pcb ( fr-4 or g-10 material ). for recommended footprint and soldering techniques refer to application note #an-994. parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 62 i d @ t c = 100c continuous drain current, v gs @ 10v 44 a i dm pulsed drain current   320 p d @t c = 25c power dissipation 120 w linear derating factor 0.8 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy  290 mj e as (6 sigma) single pulse avalanche energy tested value  946 i ar avalanche current  see fig.12a, 12b, 15, 16 a e ar repetitive avalanche energy  mj t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c absolute maximum ratings parameter typ. max. units r jc junction-to-case ??? 1.25 c/w r ja junction-to-ambient (pcb mounted,steady state)** ??? 62 thermal resistance pd - 94548a
 2 www.irf.com parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 75 ??? ??? v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.084 ??? v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance ??? 10.5 12.6 m ? v gs = 10v, i d = 48a  v gs(th) gate threshold voltage 2.0 ??? 4.0 v v ds = 10v, i d = 250a g fs forward transconductance 180 ??? ??? s v ds = 25v, i d = 48a ??? ??? 20 a v ds = 75v, v gs = 0v ??? ??? 250 v ds = 60v, v gs = 0v, t j = 150c gate-to-source forward leakage ??? ??? 200 v gs = 20v gate-to-source reverse leakage ??? ??? -200 na v gs = -20v q g total gate charge ??? 89 130 i d = 48a q gs gate-to-source charge ??? 21 32 nc v ds = 60v q gd gate-to-drain ("miller") charge ??? 30 45 v gs = 10v t d(on) turn-on delay time ??? 12 ??? v dd = 38v t r rise time ??? 80 ??? i d = 48a t d(off) turn-off delay time ??? 55 ??? r g = 4.6 ? t f fall time ??? 49 ??? v gs = 10v  between lead, ??? ??? 6mm (0.25in.) from package and center of die contact c iss input capacitance ??? 3270 ??? v gs = 0v c oss output capacitance ??? 520 ??? pf v ds = 25v c rss reverse transfer capacitance ??? 78 ??? ? = 1.0mhz, see fig. 5 c oss output capacitance ??? 3500 ??? v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance ??? 340 ??? v gs = 0v, v ds = 60v, ? = 1.0mhz c oss eff. effective output capacitance  ??? 640 ??? v gs = 0v, v ds = 0v to 60v nh electrical characteristics @ t j = 25c (unless otherwise specified) l d internal drain inductance l s internal source inductance ??? ??? s d g i gss ns 4.5 7.5 i dss drain-to-source leakage current s d g parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) ??? ??? showing the i sm pulsed source current integral reverse (body diode)  ??? ??? p-n junction diode. v sd diode forward voltage ??? ??? 1.3 v t j = 25c, i s = 48a, v gs = 0v  t rr reverse recovery time ??? 85 130 ns t j = 25c, i f = 48a, v dd = 38v q rr reverse recovery charge ??? 280 420 nc di/dt = 100a/s   t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) source-drain ratings and characteristics 80  320    repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   starting t j = 25c, l = 0.24mh r g = 25 ? , i as = 48a, v gs =10v (see figure 12).  i sd 48a, di/dt 330a/s, v dd v (br)dss , t j 175c  pulse width 400s; duty cycle 2%.   c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .   limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.   this value determined from sample failure population. 100% tested to this value in production.
 www.irf.com 3 fig 4. typical forward transconductance vs. drain current fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0. 1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 20s pulse width tj = 25c vgs top 1 5v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 0. 1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 20s pulse width tj = 175c vgs top 1 5v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 4.0 5.0 6.0 7.0 8.0 9.0 v gs , gate-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 25v 20s pulse width 0 40 80 120 160 i d, drain-to-source current (a) 0 20 40 60 80 100 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 25v 20s pulse width
 4 www.irf.com 0 40 80 120 160 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 60v vds= 38v vds= 15v i d = 48a 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 0 1000 2000 3000 4000 5000 6000 c , c a p a c i t a n c e ( p f ) cos s crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v
 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 2.5 3.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 80a 25 50 75 100 125 150 175 t c , case temperature (c) 0 10 20 30 40 50 60 70 i d , d r a i n c u r r e n t ( a ) 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2
 6 www.irf.com q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1. 0 2. 0 3. 0 4. 0 - v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 25 50 75 100 125 150 starting t j , junction temperature (c) 0 100 200 300 400 500 600 700 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 20a 34a bottom 48a
 www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 e a r , a v a l a n c h e e n e r g y ( m j ) t op single pulse bottom 50% duty cycle i d = 48a 1.0e-08 1.0e-07 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01
 8 www.irf.com fig 17. 
    

 for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
    + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"   
 v ds 90% 10% v gs t d(on) t r t d(off) t f    &' 1 ( 
#   0.1 %         + -   fig 18a. switching time test circuit fig 18b. switching time waveforms
 www.irf.com 9   
       f 5 3 0 s t h i s i s a n i r f 5 3 0 s w i t h l o t c o d e 8 0 2 4 a s s e m b l e d o n w w 0 2 , 2 0 0 0 i n t h e a s s e m b l y l i n e " l " a s s e m b l y l o t c o d e i n t e r n a t i o n a l r e c t i f i e r l o g o p a r t n u m b e r d a t e c o d e y e a r 0 = 2 0 0 0 w e e k 0 2 l i n e l
 10 www.irf.com to-262 part marking information to-262 package outline e x a m p l e : t h i s i s a n i r l 3 1 0 3 l l o t c o d e 1 7 8 9 a s s e m b l y p a r t n u m b e r d a t e c o d e w e e k 1 9 l i n e c l o t c o d e y e a r 7 = 1 9 9 7 a s s e m b l e d o n w w 1 9 , 1 9 9 7 i n t h e a s s e m b l y l i n e " c " l o g o r e c t i f i e r i n t e r n a t i o n a l  igbt 1- gate 2- collector 3- emitter 4- collector
 www.irf.com 11 data and specifications subject to change without notice. this product has been designed and qualified for the i ndustrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 9/02      3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge.


▲Up To Search▲   

 
Price & Availability of IRF3007S

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X